Skip to content

Binary heap

结构

从二叉堆的结构说起,它是一棵二叉树,并且是完全二叉树,每个结点中存有一个元素(或者说,有个权值)。

堆性质:父亲的权值不小于儿子的权值(大根堆)。同样的,我们可以定义小根堆。本文以大根堆为例。

由堆性质,树根存的是最大值(getmax 操作就解决了)。

插入操作

插入操作是指向二叉堆中插入一个元素,要保证插入后也是一棵完全二叉树。

最简单的方法就是,最下一层最右边的叶子之后插入。

如果最下一层已满,就新增一层。

插入之后可能会不满足堆性质?

向上调整:如果这个结点的权值大于它父亲的权值,就交换,重复此过程直到不满足或者到根。

可以证明,插入之后向上调整后,没有其他结点会不满足堆性质。

向上调整的时间复杂度是 $O(\log n)$ 的。

二叉堆的插入操作

删除操作

删除操作指删除堆中最大的元素,即删除根结点。

但是如果直接删除,则变成了两个堆,难以处理。

所以不妨考虑插入操作的逆过程,设法将根结点移到最后一个结点,然后直接删掉。

然而实际上不好做,我们通常采用的方法是,把根结点和最后一个结点直接交换。

于是直接删掉(在最后一个结点处的)根结点,但是新的根结点可能不满足堆性质……

向下调整:在该结点的儿子中,找一个最大的,与该结点交换,重复此过程直到底层。

可以证明,删除并向下调整后,没有其他结点不满足堆性质。

时间复杂度 $O(\log n)$。

减小某个点的权值

很显然,直接修改后,向上调整一次即可,时间复杂度为 $O(\log n)$。

实现

我们发现,上面介绍的几种操作主要依赖于两个核心:向上调整和向下调整。

考虑使用一个序列 $h$ 来表示堆。$h_i$ 的两个儿子分别是 $h_{2i}$ 和 $h_{2i+1}$,$1$ 是根结点:

h 的堆结构

参考代码:

void up(int x) {
  while (x > 1 && h[x] > h[x / 2]) {
    swap(h[x], h[x / 2]);
    x /= 2;
  }
}

void down(int x) {
  while (x * 2 <= n) {
    t = x * 2;
    if (t + 1 <= n && h[t + 1] > h[t]) t++;
    if (h[t] <= h[x]) break;
    std::swap(h[x], h[t]);
    x = t;
  }
}

建堆

考虑这么一个问题,从一个空的堆开始,插入 $n$ 个元素,不在乎顺序。

直接一个一个插入需要 $O(n \log n)$ 的时间,有没有更好的方法?

方法一:使用 decreasekey(即,向上调整)

从根开始,按 BFS 序进行。

void build_heap_1() {
  for (i = 1; i <= n; i++) up(i);
}

为啥这么做:对于第 $k$ 层的结点,向上调整的复杂度为 $O(k)$ 而不是 $O(\log n)$。

总复杂度:$\log 1 + \log 2 + \cdots + \log n = \Theta(n \log n)$。

(在「基于比较的排序」中证明过)

方法二:使用向下调整

这时换一种思路,从叶子开始,逐个向下调整

void build_heap_2() {
  for (i = n; i >= 1; i--) down(i);
}

换一种理解方法,每次「合并」两个已经调整好的堆,这说明了正确性。

注意到向下调整的复杂度,为 $O(\log n - k)$,另外注意到叶节点无需调整,因此可从序列约 $n/2$ 的位置开始调整,可减少部分常数但不影响复杂度。

$$ \begin{aligned} \text{总复杂度} & = n \log n - \log 1 - \log 2 - \cdots - \log n \ & \leq n \log n - 0 \times 2^0 - 1 \times 2^1 -\cdots - (\log n - 1) \times \frac{n}{2} \\ & = n \log n - (n-1) - (n-2) - (n-4) - \cdots - (n-\frac{n}{2}) \ & = n \log n - n \log n + 1 + 2 + 4 + \cdots + \frac{n}{2} \ & = n - 1 \ & = O(n) \end{aligned} $$

之所以能 $O(n)$ 建堆,是因为堆性质很弱,二叉堆并不是唯一的。

要是像排序那样的强条件就难说了。

应用

对顶堆

??? note "SP16254 RMID2 - Running Median Again" 维护一个序列,支持两种操作:

1. 向序列中插入一个元素

2. 输出并删除当前序列的中位数(若序列长度为偶数,则输出较小的中位数)

这个问题可以被进一步抽象成:动态维护一个序列上第 $k$ 大的数,$k$ 值可能会发生变化。

对于此类问题,我们可以使用 对顶堆 这一技巧予以解决(可以避免写权值线段树或 BST 带来的繁琐)。

对顶堆由一个大根堆与一个小根堆组成,小根堆维护大值即前 $k$ 大的值(包含第 k 个),大根堆维护小值即比第 $k$ 大数小的其他数。

这两个堆构成的数据结构支持以下操作:

  • 维护:当小根堆的大小小于 $k$ 时,不断将大根堆堆顶元素取出并插入小根堆,直到小根堆的大小等于 $k$;当小根堆的大小大于 $k$ 时,不断将小根堆堆顶元素取出并插入大根堆,直到小根堆的大小等于 $k$;
  • 插入元素:若插入的元素大于等于小根堆堆顶元素,则将其插入小根堆,否则将其插入大根堆,然后维护对顶堆;
  • 查询第 $k$ 大元素:小根堆堆顶元素即为所求;
  • 删除第 $k$ 大元素:删除小根堆堆顶元素,然后维护对顶堆;
  • $k$ 值 $+1/-1$:根据新的 $k$ 值直接维护对顶堆。

显然,查询第 $k$ 大元素的时间复杂度是 $O(1)$ 的。由于插入、删除或调整 $k$ 值后,小根堆的大小与期望的 $k$ 值最多相差 $1$,故每次维护最多只需对大根堆与小根堆中的元素进行一次调整,因此,这些操作的时间复杂度都是 $O(\log n)$ 的。

??? "参考代码" cpp --8<-- "docs/ds/code/binary-heap/binary-heap_1.cpp"