Skip to content

Berlekamp massey

Berlekamp-Massey 算法是一种用于求数列的最短递推式的算法。给定一个长为 $n$ 的数列,如果它的最短递推式的阶数为 $m$,则 Berlekamp-Massey 算法能够在 $O(nm)$ 时间内求出数列的每个前缀的最短递推式。最坏情况下 $m = O(n)$,因此算法的最坏复杂度为 $O(n^2)$。

定义

定义一个数列 ${a_0 \dots a_{n - 1} }$ 的递推式为满足下式的序列 ${r_0\dots r_m}$:

$\sum_{j = 0} ^ m r_i a_{i - j} = 0, \forall i \ge m$

其中 $r_0 = 1$。$m$ 称为该递推式的 阶数

数列 ${a_i}$ 的最短递推式即为阶数最小的递推式。

做法

与上面定义的稍有不同,这里定义一个新的递推系数 ${f_0 \dots f_{m - 1}}$,满足:

$a_i = \sum_{j = 0} ^ {m - 1} f_j a_{i - j - 1}, \forall i \ge m$

容易看出 $f_i = -r_{i + 1}$,并且阶数 $m$ 与之前的定义是相同的。

我们可以增量地求递推式,按顺序考虑 ${a_i}$ 的每一位,并在递推结果出现错误时对递推系数 ${f_i}$ 进行调整。方便起见,以下将前 $i$ 位的最短递推式记为 $F_i = {f_{i, j}}$。

显然初始时有 $F_0 = {}$。假设递推系数 $F_{i - 1}$ 对数列 ${a_i}$ 的前 $i - 1$ 项均成立,这时对第 $i$ 项就有两种情况:

  1. 递推系数对 $a_i$ 也成立,这时不需要进行任何调整,直接令 $F_i = F_{i - 1}$ 即可。
  2. 递推系数对 $a_i$ 不成立,这时需要对 $F_{i - 1}$ 进行调整,得到新的 $F_i$。

设 $\Delta_i = a_i - \sum_{j = 0} ^ m f_{i - 1, j} a_{i - j - 1}$,即 $a_i$ 与 $F_{i - 1}$ 的递推结果的差值。

如果这是第一次对递推系数进行修改,则说明 $a_i$ 是序列中的第一个非零项。这时直接令 $F_i$ 为 $i$ 个 $0$ 即可,显然这是一个合法的最短递推式。

否则设上一次对递推系数进行修改时,已考虑的 ${a_i}$ 的项数为 $k$。如果存在一个序列 $G = {g_0 \dots g_{m' - 1}}$,满足:

$\sum_{j = 0} ^ {m' - 1} g_j a_{i' - j - 1} = 0, \forall i' \in [m', i)$

并且 $\sum_{j = 0} ^ {m' - 1} g_j a_{i - j - 1} = \Delta_i$,那么不难发现将 $F_k$ 与 $G$ 按位分别相加之后即可得到一个合法的递推系数 $F_i$。

考虑如何构造 $G$。一种可行的构造方案是令

$G = {0, 0, \dots, 0, \frac{\Delta_i}{\Delta_k}, -\frac{\Delta_i}{\Delta_k}F_k}$

其中前面一共有 $i - k - 1$ 个 $0$,且最后的 $-\frac{\Delta_i}{\Delta_k} F_k$ 表示将 $F_k$ 每项乘以 $-\frac{\Delta_i}{\Delta_k}$ 后接在序列后面。

不难验证此时 $\sum_{j = 0} ^ {m' - 1} g_j a_{i - j - 1} = \Delta_k \frac{\Delta_i}{\Delta_k} = \Delta_i$,因此这样构造出的是一个合法的 $G$。将 $F_i$ 赋值为 $F_k$ 与 $G$ 逐项相加后的结果即可。

如果要求的是符合最开始定义的递推式 ${r_i}$,则将 ${f_j}$ 全部取相反数后在最开始插入 $r_0 = 1$ 即可。

从上述算法流程中可以看出,如果数列的最短递推式的阶数为 $m$,则算法的复杂度为 $O(nm)$。最坏情况下 $m = O(n)$,因此算法的最坏复杂度为 $O(n^2)$。

在实现算法时,由于每次调整递推系数时都只需要用到上次调整时的递推系数 $F_k$,因此如果只需要求整个数列的最短递推式,可以只存储当前递推系数和上次调整时的递推系数,空间复杂度为 $O(n)$。

??? note "参考实现" ```cpp vector berlekamp_massey(const vector &a) { vector v, last; // v is the answer, 0-based, p is the module int k = -1, delta = 0;

  for (int i = 0; i < (int)a.size(); i++) {
    int tmp = 0;
    for (int j = 0; j < (int)v.size(); j++)
      tmp = (tmp + (long long)a[i - j - 1] * v[j]) % p;

    if (a[i] == tmp) continue;

    if (k < 0) {
      k = i;
      delta = (a[i] - tmp + p) % p;
      v = vector<int>(i + 1);

      continue;
    }

    vector<int> u = v;
    int val = (long long)(a[i] - tmp + p) * power(delta, p - 2) % p;

    if (v.size() < last.size() + i - k) v.resize(last.size() + i - k);

    (v[i - k - 1] += val) %= p;

    for (int j = 0; j < (int)last.size(); j++) {
      v[i - k + j] = (v[i - k + j] - (long long)val * last[j]) % p;
      if (v[i - k + j] < 0) v[i - k + j] += p;
    }

    if ((int)u.size() - i < (int)last.size() - k) {
      last = u;
      k = i;
      delta = a[i] - tmp;
      if (delta < 0) delta += p;
    }
  }

  for (auto &x : v) x = (p - x) % p;
  v.insert(v.begin(), 1);

  return v;  // $\forall i, \sum_{j = 0} ^ m a_{i - j} v_j = 0$
}
```

朴素的 Berlekamp-Massey 算法求解的是有限项数列的最短递推式。如果待求递推式的序列有无限项,但已知最短递推式的阶数上界,则只需取出序列的前 $2m$ 项即可求出整个序列的最短递推式。(证明略)

应用

由于 Berlekamp-Massey 算法的数值稳定性比较差,在处理实数问题时一般很少使用。为了叙述方便,以下均假定在某个质数 $p$ 的剩余系下进行运算。

求向量列或矩阵列的最短递推式

如果要求向量列 $\mathbf{v}_i$ 的最短递推式,设向量的维数为 $n$,我们可以随机一个 $n$ 维行向量 $\mathbf u^T$,并计算标量序列 ${\mathbf{u}^T\mathbf{v}_i}$ 的最短递推式。由 Schwartz-Zippel 引理,二者的最短递推式有至少 $1 - \frac n p$ 的概率相同。

求矩阵列 ${A_i}$ 的最短递推式也是类似的,设矩阵的大小为 $n \times m$,则只需随机一个 $1 \times n$ 的行向量 $\mathbf u^T$ 和一个 $m \times 1$ 的列向量 $\mathbf{v}$,并计算标量序列 ${\mathbf{u}^T A_i \mathbf{v}}$ 的最短递推式即可。由 Schwartz-Zippel 引理可以类似地得到二者相同的概率至少为 $1 - \frac{n + m} p$。

优化矩阵快速幂

设 $\mathbf{f}i$ 是一个 $n$ 维列向量,并且转移满足 $\mathbf{f}_i = A \mathbf{f}{i - 1}$,则可以发现 ${\mathbf{f}_i}$ 是一个不超过 $n$ 阶的线性递推向量列。(证明略)

我们可以直接暴力求出 $\mathbf{f}0 \dots \mathbf{f}{2n - 1}$,然后用前面提到的做法求出 ${\mathbf{f}_i}$ 的最短递推式,再调用 常系数齐次线性递推 即可。

如果要求的向量是 $\mathbf{f}_m$,则算法的复杂度是 $O(n^3 + n\log n \log m)$。如果 $A$ 是一个只有 $k$ 个非零项的稀疏矩阵,则复杂度可以降为 $O(nk + n\log n \log m)$。但由于算法至少需要 $O(nk)$ 的时间预处理,因此在压力不大的情况下也可以使用 $O(n^2 \log m)$ 的线性递推算法,复杂度同样是可以接受的。

求矩阵的最小多项式

方阵 $A$ 的最小多项式是次数最小的并且满足 $f(A) = 0$ 的多项式 $f$。

实际上最小多项式就是 ${A^i}$ 的最小递推式,所以直接调用 Berlekamp-Massey 算法就可以了。如果 $A$ 是一个 $n$ 阶方阵,则显然最小多项式的次数不超过 $n$。

瓶颈在于求出 $A^i$,因为如果直接每次做矩阵乘法的话复杂度会达到 $O(n^4)$。但考虑到求矩阵列的最短递推式时实际上求的是 ${\mathbf{u}^T A^i \mathbf{v}}$ 的最短递推式,因此我们只要求出 $A^i \mathbf{v}$ 就行了。

假设 $A$ 有 $k$ 个非零项,则复杂度为 $O(kn + n^2)$。

求稀疏矩阵行列式

如果能求出方阵 $A$ 的特征多项式,则常数项乘上 $(-1)^n$ 就是行列式。但是最小多项式不一定就是特征多项式。

实际上如果把 $A$ 乘上一个随机对角阵 $B$,则 $AB$ 的最小多项式有至少 $1 - \frac {2n^2 - n} p$ 的概率就是特征多项式。最后再除掉 $\text{det}\;B$ 就行了。

设 $A$ 为 $n$ 阶方阵,且有 $k$ 个非零项,则复杂度为 $O(kn + n ^ 2)$。

求稀疏矩阵的秩

设 $A$ 是一个 $n\times m$ 的矩阵,首先随机一个 $n\times n$ 的对角阵 $P$ 和一个 $m\times m$ 的对角阵 $Q$, 然后计算 $Q A P A^T Q$ 的最小多项式即可。

实际上不用调用矩阵乘法,因为求最小多项式时要用 $Q A P A^T Q$ 乘一个向量,所以我们依次把这几个矩阵乘到向量里就行了。答案就是最小多项式除掉所有 $x$ 因子后剩下的次数。

设 $A$ 有 $k$ 个非零项,且 $n \le m$,则复杂度为 $O(kn + n ^ 2)$。

解稀疏方程组

问题:已知 $A \mathbf x = \mathbf b$, 其中 $A$ 是一个 $n \times n$ 的 满秩 稀疏矩阵,$\mathbf b$ 和 $\mathbf x$ 是 $1\times n$ 的列向量。$A, \mathbf b$ 已知,需要在低于 $n^\omega$ 的复杂度内解出 $x$。

做法:显然 $\mathbf x = A^{-1} \mathbf b$。如果我们能求出 ${A^i \mathbf b}$($i \ge 0$) 的最小递推式 ${r_0 \dots r_{m - 1}}$($m \le n$), 那么就有结论

$A^{-1} \mathbf b = -\frac 1 {r_{m - 1}} \sum_{i = 0} ^ {m - 2} A^i \mathbf b r_{m - 2 - i}$

(证明略)

因为 $A$ 是稀疏矩阵,直接按定义递推出 $\mathbf b \dots A^{2n - 1} \mathbf b$ 即可。

同样地,设 $A$ 中有 $k$ 个非零项,则复杂度为 $O(kn + n^2)$。

??? note "参考实现" ```cpp vector solve_sparse_equations(const vector > &A, const vector &b) { int n = (int)b.size(); // 0-based

  vector<vector<int> > f({b});

  for (int i = 1; i < 2 * n; i++) {
    vector<int> v(n);
    auto &u = f.back();

    for (auto [x, y, z] : A)  // [x, y, value]
      v[x] = (v[x] + (long long)u[y] * z) % p;

    f.push_back(v);
  }

  vector<int> w(n);
  mt19937 gen;
  for (auto &x : w) x = uniform_int_distribution<int>(1, p - 1)(gen);

  vector<int> a(2 * n);
  for (int i = 0; i < 2 * n; i++)
    for (int j = 0; j < n; j++) a[i] = (a[i] + (long long)f[i][j] * w[j]) % p;

  auto c = berlekamp_massey(a);
  int m = (int)c.size();

  vector<int> ans(n);

  for (int i = 0; i < m - 1; i++)
    for (int j = 0; j < n; j++)
      ans[j] = (ans[j] + (long long)c[m - 2 - i] * f[i][j]) % p;

  int inv = power(p - c[m - 1], p - 2);

  for (int i = 0; i < n; i++) ans[i] = (long long)ans[i] * inv % p;

  return ans;
}
```

例题

  1. LibreOJ #163. 高斯消元 2
  2. ICPC2021 台北 Gym103443E. Composition with Large Red Plane, Yellow, Black, Gray, and Blue