Inv tri func
描述
给定多项式 $f\left(x\right)$,求模 $x^{n}$ 意义下的 $\arcsin{f\left(x\right)}, \arccos{f\left(x\right)}$ 与 $\arctan{f\left(x\right)}$。
解法
仿照求多项式 $\ln$ 的方法,对反三角函数求导再积分可得:
$$ \begin{aligned} \frac{\mathrm{d}}{\mathrm{d} x} \arcsin{x} &= \frac{1}{\sqrt{1 - x^{2}}} \ \arcsin{x} &= \int \frac{1}{\sqrt{1 - x^{2}}} \mathrm{d} x \ \frac{\mathrm{d}}{\mathrm{d} x} \arccos{x} &= - \frac{1}{\sqrt{1 - x^{2}}} \ \arccos{x} &= - \int \frac{1}{\sqrt{1 - x^{2}}} \mathrm{d} x \ \frac{\mathrm{d}}{\mathrm{d} x} \arctan{x} &= \frac{1}{1 + x^{2}} \ \arctan{x} &= \int \frac{1}{1 + x^{2}} \mathrm{d} x \end{aligned} $$
那么代入 $f\left(x\right)$ 就有:
$$ \begin{aligned} \frac{\mathrm{d}}{\mathrm{d} x} \arcsin{f\left(x\right)} &= \frac{f'\left(x\right)}{\sqrt{1 - f^{2}\left(x\right)}} \ \arcsin{f\left(x\right)} &= \int \frac{f'\left(x\right)}{\sqrt{1 - f^{2}\left(x\right)}} \mathrm{d} x \ \frac{\mathrm{d}}{\mathrm{d} x} \arccos{f\left(x\right)} &= - \frac{f'\left(x\right)}{\sqrt{1 - f^{2}\left(x\right)}} \ \arccos{f\left(x\right)} &= - \int \frac{f'\left(x\right)}{\sqrt{1 - f^{2}\left(x\right)}} \mathrm{d} x \ \frac{\mathrm{d}}{\mathrm{d} x} \arctan{f\left(x\right)} &= \frac{f'\left(x\right)}{1 + f^{2}\left(x\right)} \ \arctan{f\left(x\right)} &= \int \frac{f'\left(x\right)}{1 + f^{2}\left(x\right)} \mathrm{d} x \end{aligned} $$
直接按式子求就可以了。
代码
??? "多项式反三角函数" ```cpp constexpr int maxn = 262144; constexpr int mod = 998244353;
using i64 = long long;
using poly_t = int[maxn];
using poly = int *const;
inline void derivative(const poly &h, const int n, poly &f) {
for (int i = 1; i != n; ++i) f[i - 1] = (i64)h[i] * i % mod;
f[n - 1] = 0;
}
inline void integrate(const poly &h, const int n, poly &f) {
for (int i = n - 1; i; --i) f[i] = (i64)h[i - 1] * inv[i] % mod;
f[0] = 0; /* C */
}
void polyarcsin(const poly &h, const int n, poly &f) {
/* arcsin(f) = ∫ f' / sqrt(1 - f^2) dx */
static poly_t arcsin_t;
const int t = n << 1;
std::copy(h, h + n, arcsin_t);
std::fill(arcsin_t + n, arcsin_t + t, 0);
DFT(arcsin_t, t);
for (int i = 0; i != t; ++i) arcsin_t[i] = sqr(arcsin_t[i]);
IDFT(arcsin_t, t);
arcsin_t[0] = sub(1, arcsin_t[0]);
for (int i = 1; i != n; ++i)
arcsin_t[i] = arcsin_t[i] ? mod - arcsin_t[i] : 0;
polysqrt(arcsin_t, n, f);
polyinv(f, n, arcsin_t);
derivative(h, n, f);
DFT(f, t);
DFT(arcsin_t, t);
for (int i = 0; i != t; ++i) arcsin_t[i] = (i64)f[i] * arcsin_t[i] % mod;
IDFT(arcsin_t, t);
integrate(arcsin_t, n, f);
}
void polyarccos(const poly &h, const int n, poly &f) {
/* arccos(f) = - ∫ f' / sqrt(1 - f^2) dx */
polyarcsin(h, n, f);
for (int i = 0; i != n; ++i) f[i] = f[i] ? mod - f[i] : 0;
}
void polyarctan(const poly &h, const int n, poly &f) {
/* arctan(f) = ∫ f' / (1 + f^2) dx */
static poly_t arctan_t;
const int t = n << 1;
std::copy(h, h + n, arctan_t);
std::fill(arctan_t + n, arctan_t + t, 0);
DFT(arctan_t, t);
for (int i = 0; i != t; ++i) arctan_t[i] = sqr(arctan_t[i]);
IDFT(arctan_t, t);
inc(arctan_t[0], 1);
std::fill(arctan_t + n, arctan_t + t, 0);
polyinv(arctan_t, n, f);
derivative(h, n, arctan_t);
DFT(f, t);
DFT(arctan_t, t);
for (int i = 0; i != t; ++i) arctan_t[i] = (i64)f[i] * arctan_t[i] % mod;
IDFT(arctan_t, t);
integrate(arctan_t, n, f);
}
```